Integrating Modeling Languages with Ontologies
in the Context of Industry 4.0

Mario Libro, Sebastiano Gaiardelli, Michele Lora, Franco Fummi
Industrial Computer Engineering Laboratory,
Department of Engineering for Innovation Medicine,
University of Verona, Italy,
name.surname@univr.it

Abstract—The evolving landscape of manufacturing systems
and the increasing complexity of production lines necessitate
innovative approaches for efficient information management and
process modeling. The System Modeling Language (SysML) pro-
vides a powerful language to express such information. However,
the expressiveness comes at a cost: on the one hand, the modeling
phase requires a deep understanding of the domain; on the other,
SysML lacks rigorous semantics.

This work introduces a novel methodology that enriches the
SysML with ontology reasoning in the context of manufacturing
systems. The approach uses ontologies as a comprehensive
knowledge base that encapsulates essential details about the
machinery, their provided functions, and the associated con-
straints. The approach offers a reliable and efficient way to
verify the consistency and correctness of production recipes:
it ensures recipes’ practical applicability in the manufacturing
process while reducing errors that can occur in the modeling
phase. The proposed methodology has been validated through
its application to a fully-fledged manufacturing line, showing its
applicability in real-world scenarios.

Index Terms—Computer-aided manufacturing, process model-
ing, knowledge representation.

I. INTRODUCTION

Industry 4.0 is deeply changing manufacturing companies.
This revolution has brought a range of unprecedented chal-
lenges for the design and operation of production lines [1]. A
critical problem lies in developing effective and sophisticated
information management systems [2]. Manufacturing systems
are always more interconnected with each other, increasing
their complexity day by day. Optimizing the flow of informa-
tion between these types of systems is crucial for maintaining
high production standards [3].

These challenges, along with the increasing product vari-
ants, smaller lot sizes and volatile demand require flexible
production systems that can be adapted to the needs [4]. A
deeper understanding of factory operations, constraints, and
requirements is fundamental to assist manufacturing compa-
nies in this evolving landscape.

This study was carried out within the PNRR research activities of the
consortium iNEST (Interconnected North-Est Innovation Ecosystem) funded
by the European Union Next-GenerationEU (Piano Nazionale di Ripresa e
Resilienza (PNRR) — Missione 4 Componente 2, Investimento 1.5 — D.D.
1058 23/06/2022, ECS_00000043). It has been also partially supported by
the PRINN 2022T7YSHJ SMART-IC - Next Generation EU project. This
manuscript reflects only the Authors’ views and opinions, neither the European
Union nor the European Commission can be considered responsible for them.

iPlant description

Recipes = Materials Inconsist.
Machinery Skills

Valid ,

Reasoner

Consistency Check
SysML
Parser
Foundational Pro;il:ﬁ;lon
Ontology Ontology
N

Figure 1. Overview of the proposed methodology. On the left, the production
plant, represented by a SysML is paired with a Foundational Ontology to
create the ontology of the production plant. A reasoner verifies the correctness
of the model by checking its consistency.

Existing modeling languages, such as SysML, already
provide support to represent comprehensive descriptions of
machinery and manufacturing processes [5]. They provide
organized and accurate ways to describe the many components
of a manufacturing system, enabling better comprehension and
analysis of production workflows. Nevertheless, they display
an inherent limitation in their capacity to represent the seman-
tics of factory operations with the same level of rigorousness,
creating a considerable gap in the complete understanding
of manufacturing processes. A promising direction lies in
representing manufacturing systems with formal descriptions,
able to catch their capabilities and interoperability [6], [7].

In the context of manufacturing processes, semantics refer to
the detailed understanding of the transformations performed on
material throughout the production process. This requires an
in-depth understanding of the alterations a material undergoes
as it progresses from one manufacturing stage to another,
its interaction with various machines, and the subsequent
outputs at each stage. Despite the rich information SysML
modeling offers, it requires a significant amount of expertise.
Therefore, simplifying the modeling process while preserving
the integrity and accuracy of the models is a substantial need.

Figure 1 depicts the contribution of this paper. We propose

a methodology combining the use of SysML and ontologies
to check the consistency of production recipes. Production
systems and recipes are modeled in SysML models accord-
ing to the modeling approach described in [8]. The model
describes the system equipment and the production recipes.
The lack of formal support for SysML models is mitigated
by using a Foundational Ontology, based on the DIN 8580
standard, defining the terminology, the concepts, and the
relations among concepts. Combining the SysML model and
the Foundational Ontology, the approach builds a Production
Plant Ontology that encodes the information in the SysML
models using the concepts in the Foundational Ontology.
Finally, a solver is used to verify the consistency of the
Production Plant Ontology. If the ontology is consistent, then
the specified recipes can be executed by the production system.
Otherwise, the solver provides feedback useful for correcting
the recipes in the SysML model.

In Section II we analyze the state-of-the-art in information
modeling and model-based design of production systems.
Then, in Section III we present the structure of the Production
Plant Ontology and the information it contains. Section IV
presents the methodology that automatically creates the Pro-
duction Plant Ontology and verifies its consistency. Section V
is devoted to demonstrating the applicability of the proposed
approach by modeling a production process of a fully-fledged
production line. As pointed out in the concluding remarks
presented in Section VI, the methodology allows to reduce
the amount of work necessary to specify and verify the
production recipes. Furthermore, it enables rigorous reasoning
about production recipes and system capabilities.

II. BACKGROUND

Model-based System Engineering (MBSE) is a methodol-
ogy supporting all the design phases by using models of the
system being engineered [9]. MBSE also proved useful in
the manufacturing context to design complex manufacturing
systems [10]. SysML [11] is the de facto standard modeling
language to model complex systems implementing the MBSE
principles [9], [12]. However, as a major drawback, SysML
lacks formal semantics that would enable verifying system
requirements, model consistency, and correctness.

Previous attempts of pairing SysML with ontologies aimed
at combining the graphical and intuitive way to represent man-
ufacturing models of SysML, with the support for consistency
verification provided by ontologies [13]. SysML models are
first translated into a Web Ontology Language (OWL) file;
then, a set of queries check the consistency of the model [14].
Among the principal applications of this methodology, we can
find requirements verification [12], [15], [16] and constraints
verification [7] during all the design phases. Other works are
focused on the verification of the scheduling and planning
with respect to the available materials and machine capa-
bilities [17], [18]. These works propose an ad-hoc mapping
from SysML to ontologies, limiting the interoperability of the
SysML models.

A promising approach, proposed in [10], [19], [20], in-
volves building ontologies based on community-maintained
Information Resources (IRs). IRs typically include industry
standards such as ISO or IEEE standards, alongside scientific
publications, and project reports. In particular, this approach
incorporates industrial standards like ISA 88, VDI 2860,
and DIN 8580. The standards, as core components of IRs,
offer mature and universally acknowledged information, be-
ing widely recognized and adopted within the professional
community. As such, they ensure a common terminology
accepted by large groups of users familiar with these standards.
Alternatively, some works that propose the use of SysML
metamodels based on industrial standards to facilitate the
modeling phase [21], [22].

While these works are promising, mapping from SysML
to the ontology is performed manually and usually limited to
requirements and constraints verification. While recent work
is based on machine standards, it does not focus on machine
capabilities, which is the main focus of our contribution.

III. ONTOLOGY CONSTRUCTION

The proposed methodology assumes SysML models based
on the modeling approach described in [8]. The production
system structure is modeled as a SysML Block Definition
Diagram (BDD); the pieces of machinery are modeled as
blocks in the BDD. Each manufacturing action performed by
machines is represented by a SysML Activity Diagram. Each
Activity Diagram models the transformation from the input
to the output pieces. This section describes how the concepts
expressed in the SysML are encoded into ontologies.

As depicted in Figure 1, the construction of a Production
Plant Ontology requires combining the SysML description of
the plant with a Foundational Ontology. The Foundational
Ontology is a fixed ontology built by relying on the main
available IRs. As such, it contains all the knowledge required
to describe production plants in general. For instance, it must
contain the knowledge required to express concepts such as
physical machine and manufacturing operations as well as
their relations. In this work, we rely on a Foundational Ontol-
ogy based on the DIN 8580 standard. Then, the information
modeled in the SysML description is mapped onto the classes
and relations defined by the Foundational Ontology to create
the Production Plant Ontology.

A class in an ontology represents a set of instances or
individuals sharing common characteristics or attributes. The
ontologies we propose to build are structured around four
principal classes (Machine, MachineFunction, Piece
and PieceState), which are defined in the Foundational
Ontology. Table I summarizes the fundamental elements used
to construct ontologies. Each line reports the main classes
being used, grouped according to the four principal classes
listed above. For each class, columns specify the subclasses
inheriting from the class, their role, the relations and inverse
relationships with other classes, and the range (i.e., the target
class) of these relations. The class data properties column

Table 1
COMPREHENSIVE REPRESENTATION OF THE ONTOLOGY STRUCTURE, DETAILING THE SCOPES, CLASSES, SUBCLASSES, OBJECT PROPERTIES AND THEIR
RANGES. THE TABLE ALSO INDICATES THE PRESENCE OF INVERSE OBJECT PROPERTIES, DATA PROPERTIES, AND PROPERTY RESTRICTIONS, OFFERING A
COMPLETE OVERVIEW OF THE ONTOLOGY’S ARCHITECTURE.

Concepts Classes Subclasses Object Properties Range Inverse Objecc Data Prop.
Properties Prop. Restrictions

Physical industrial machinery =~ Machine Taxonomy provides- Machine- isProvided v X

available in the plant MachineFunction Function ByMachine

Manufacturing operations MachineFunction Taxonomy providesOutputPiece, Piece isOutputPieceOf- v/ X

performed by machinery requiresInputPiece MachineFunction,
isInputPieceOf-
MachineFunction

Materials processed by a Piece InputPiece, hasPieceState PieceState isPieceStateOf- v X

manufacturing operation OutputPiece Piece

Inputs materials of a InputPiece - hasPieceState PieceState isPieceStateOf- v X

manufacturing operation Piece

Materials produced by a OutputPiece - hasPieceState PieceState isPieceStateOf- v X

manufacturing operation Piece

Material’s state PieceState InputPieceState, — - v X

OutputPieceState
State of input materials InputPieceState MachineFunction- - - v X
InputPieceState

Semantic of machine OutputPieceState ~ — - - v X

functions

Machine function’s MachineFunction- — - - v v

constraints InputPieceState

indicates whether the class has attributes, while the property
restrictions column reports whether the class has constraints.

Each physical machine in the industrial plant, originally
modeled by a SysML block, is represented in the ontol-
ogy by an instance of the Machine class. Machines are
further organized in a taxonomy represented by a hierarchy
of subclasses. The right-hand side of Figure 2 depicts the
class hierarchy representing a machine taxonomy. For in-
stance, the Milling Machine class inherits from the Subtractive
Production Machine class, a subclass of Material Processing
Machine extending the class representing all the Machines.
Each machine is related to a set of machine function via
the providesMachineFunction object property and the
reversed object property isProvidedByMachine.

The MachineFunction class, structured in a hierarchy
of subclasses, forms a taxonomy that encapsulates the diverse
operations or functions a machine can perform. Initially mod-
eled using SysML Activity Diagrams, these manufacturing
operations are integrated into the ontology by instantiating
individuals within the subclass hierarchy, as illustrated on the
left side of Figure 2. Machine functions are connected to ma-
chines through the relations providesMachineFunction
and its inverse, isProvidedByMachine. In Figure 2, the
blue boxes depict the instantiation of two individuals: one
representing a machine function and the other a specific
milling machine. Thus, the characteristics of each individual
are enriched using data properties, allowing for the specifi-
cation of a range of attributes. In the ontology, each indi-
vidual representing an operation is also connected to individ-
uals from the Piece class. This connection is established

[Manufacturing] [Assembling] E] [
[Disc. Manufact.] [Cont. Manufact.] E]
(
=]
=
tool_type

providesMachineFunction

Material Inspection
Processing Mach. Testing Mach.
Additive
Production Mach.

[)

Milling Machine @
model_number
milling_machine

Subtractive
Production Mach.

manufacturer
location

isProvidedByMachine

Figure 2. Portion of the Foundational ontology. The left-hand side depicts the
hierarchical taxonomy of machine functions. The right-hand side shows the
taxonomy of machines. Blue boxes highlight the instantiation of individuals
within the Machine and MachineFunction subclasses and their connection via
the providesMachineFunction relation.

through the object properties providesOutputPiece and
requiresInputPiece.

The Piece class represents materials used or produced
by machine functions. Each individual of this class is asso-
ciated with individuals of the class PieceState, using the
object property hasPieceState. This class is specialized
by the subclasses InputPiece and OutputPiece. These
subclasses represent the role of pieces as either inputs for

Foundational

SysML | Ontology l'
Parser Ref.

- |

Inconsist. Production
Reasoner Plant
<: Valid Ontology r
owWL

Figure 3. Overview of the verification pipeline, composed of five main
activities. The Production Plant Ontology is generated by a parser analyzing
the SysML model and the Foundational Ontology. A resoner verify the
correctness of the Production Plant Ontology (i.e., SysML model).

machine functions or outputs from these operations.

The PieceState class identifies the state of a ma-
terial at a specific moment. This class is concretized by
the InputPieceState and OutputPieceState sub-
classes. The InputPieceState class represents the state
of an input piece of a machine function. Meanwhile, the
OutputPieceState class describes the alterations or mod-
ifications that a machine function applies to input pieces.

The InputPieceState class is composed of numerous
subclasses (i.e., MachineFunctionInputPieceState),
precisely one for each specific machine function instance.
These subclasses allow adding restrictions on the individuals
they encapsulate. This mechanism allows to define both the
constraints and the effect of a machine function over its
input pieces. These constraints are specified using a value
restrictions technique. This ensures that the data properties
of instantiated individuals within each subclass conform to
particular values or ranges of values.

IV. ONTOLOGY VERIFICATION

The proposed verification pipeline is illustrated in Figure 3.
A key component is the SysML Parser, necessary to encode
SysML models into OWL ontologies. The parser takes as input
a SysML model and the Foundational Ontology and generates
the Production Plant Ontology. Then, it creates the Production
Plant Ontology by mapping the information contained in
the model onto the concepts specified in the Foundational
Ontology and applying multiple ontology refinement steps.
Once the SysML model is encoded in the Production Plant
Ontology, its correctness is evaluated by using Pellet [23]:
a reasoner supporting ontologies encoded in OWL 2 DL.
The reasoner checks the consistency of the model to identify
inconsistencies in the SysML model. Thus, ensuring that the
production recipes are coherent and executable by the specified
production plant. The following part of this section details the
steps of the proposed verification pipeline.

Algorithm 1: Instantiate input piece states.

1 Function findSemantics (mf: MachineFunction) :

2 return ontology.SPARQL("SELECT ?property
?value WHERE {mf ?property ?value .}");

3 Function instantiateIndividual (piece:
InputPieceState, mf: MachineFunction) :

a4 | return ontology.SPARQL(piece, mf);

Inputs : ips_list: InputPieceStates[], mfs_list:
MachineFunctions[], mchs_list: Machines|[]
5 for i=1 to length(ips_list) do
6 if ips[i] is undefined then

7 semantics_mf <
findSemantics (mfsfi-1]);
8 ips[i] - combine(semantics_mf, ips[i-1]);

9 instantiateIndividual (ips[i], mfs[i]);
10 end

A. SysML Parsing and Ontology Mapping

The SysML model is exported into an XML Metadata
Interchange (XMI) file. The XMI format is both machine-
readable and an open standard, making it an ideal choice for
interoperability. The parser analyzes the XMI file to extract
all the necessary information to generate the Production Plant
Ontology. The creation of the Production Plant Ontology
follows four steps:

1) Creation of the Foundational Ontology by establishing
the static structure of the ontology. As the Foundational
Ontology is based on shared IRs, this step can be done
only once for multiple production plants in the case
multiple production plants can be expressed by using
the same set of concepts;

2) Population of the ontology. The ontology is populated
with individuals by processing SysML BDD diagrams.
This process consists of instantiating individuals belong-

ing to Machine, MachineFunctions, Pieces,
and PieceState classes;

3) Instantiation of the production recipes. The
MachineFunctionInputPieceState classes

are created by analyzing the SysML Activity Diagram
and instantiating all the necessary individuals to
represent the production recipes within the ontology;

4) Generation of the OWL file containing the Production

Plant Ontology.

To construct and manipulate ontologies, the parser exploits
OwlReady?2 [24]: a Python library providing a set of utilities
to create, analyze and manipulate ontologies. The process
begins by loading the Foundational Ontology from an OWL
file. Once the foundational structure is established, the parser
analyzes the SysML BDDs within the XMI file. The parser
translates all the machines and their operations into distinct
individuals within the ontology. The individuals are orga-
nized within the specific taxonomies of the Machine and
MachineFunction classes. In this phase, the constraints of
each machine function are also incorporated into the ontology.

For each machine function, it creates a new subclass extending
the InputPieceState using logical restrictions.

Then, the parser processes the Activity Di-
agrams of the production recipes. It creates a
MachineFunctionInputPieceState instance for

each operation specified in the recipes. The information in
the SysML Activity Diagrams of the production recipes does
not provide enough details of the material’s state processed
by the operations. Furthermore, it is worth noting that when
modeling a production recipe, the user is not forced to define
an input for every operation, as it often depends on the
outputs of other operations. However, the complete list of
inputs of each operation is crucial information to verify the
consistency of the recipe. The missing pieces of information
are computed by querying the intermediate ontology with a
set of SPARQL queries, according to the procedure described
in Algorithm 1.

The algorithm takes as input the ordered sequence of
operations of a production recipe mfs_1ist, the machines
executing these operations mchs_1list, and the specified
inputs for each operation ips_1list. The algorithm searches
the undefined input piece states by looping over the list
containing all the input piece states (lines 5-6). An input
piece state is undefined whenever not specified within the
SysML Activity Diagram. Lines 7-8 compute the undefined
input piece state: it first retrieves the semantics of the machine
function producing the input piece state ips[i]; then it
applies the semantics over the previous input piece state
ips[i-1]. The function findSemantics, defined in line
1, retrieves the semantics of a machine function by searching
it within the ontology. The semantics contain the attributes
modified by the operation. In line 8, the retrieved semantics
is combined with its input piece state, effectively creating the
output piece state of that operation. This output state is used
as the input piece state for the current operation. Then, the
computed input piece state is instantiated (line 9) by calling
the function instantiateIndividual (defined in line
3) with the current operation and input piece state as inputs.
This function instantiates the individuals in their corresponding
MachineFunctionInputPieceState class.

B. Ontology Consistency Checking

Once this step is finished, the Production Plant Ontology
is completed and can be exported into an OWL file. The
model’s correctness and the feasibility of the production recipe
are verified by checking the consistency of the ontology
using the Pellet reasoner. Additionally, the OWL file can be
examined using Protégé [25], a well-known tool for creating,
manipulating, and analyzing ontologies. This allows us to
properly examine generated ontology, enabling the analysis
of the inconsistencies identified by the Pellet reasoner.

V. CASE STUDY

The proposed methodology has been validated by modeling
a production recipe of the Industrial Computer Engineering

ClampingEngagelnputPieceState
id: char=1
has_engraving: boolean = False
has_engraved_text: char =""
is_clamped: boolean = False
material_type: char = "plastic"

height: float = 300.0 Engraving ClampingDisengage
length: float = 600.0 InputPieceState InputPieceState
width: float = 400.0 4 dermed - |
weight: float = 200.0 notcel # not defined
shape: char = "parallelepiped"
position: char = "millingMachine"
' . clampingEngage: engraving: ,| clampingDisengage: -®
MachineFunction MachineFunction MachineFunction
! 1
millingMachine: millingMachine: millingMachine:

Machine Machine Machine

Figure 4. Overview of the production recipe used as case study represented
with SysML activity diagram. Yellow boxes identify the machine function
composing the recipe. Each machine function is connected to its accepted
input piece state (on the top) and the machinery implementing the machine
function (on the bottom).

(ICE) Laboratory: a research facility! equipped with a fully-
fledged reconfigurable manufacturing line. The ICE laboratory
is equipped with a vertical automated warehouse storing
the materials; a robotic assembly cell with two collaborative
robots; a Quality Checking (QC) cell with visual cameras;
an additive manufacturing cell equipped with multiple 3D
printers; a subtractive manufacturing cell equipped with a
four-axis Computerized Numerical Control (CNC) milling
machine; a functional control cell equipped with a flying
probe functional tester machine for testing electronic boards. A
mini-pallet conveyor belt and two Automated Guided Vehicles
(AGVs) move materials between the different working cells in
the manufacturing line.

We considered the production recipe depicted in Figure 4.
It implements a manufacturing process using the milling
machine to engrave a specific word onto a plastic piece.
The production recipe consists of three main machine func-
tions: clampingEngage operation closing the clamping
device to hold the workpiece; the engraving operation,
which engraves the specified word on the workpiece; the
clampingDisengage operation opening the clamping de-
vice to release the workpiece.

A. Automatic Generation

Table II reports the main metrics of the SysML model
used in the case study. The initial value column indicates
the total counts of each parameter, providing a snapshot of
the model before applying our methodology. The generated
column reports the alterations in these values after applying the
automatic generation process. Since the automatic generation
process is applied only to the ontology, the latter column
applies solely to the OWL file’s parameters.

The table is organized into three sections, each representing
a different set of parameter types. The first section details the
parameters related to the SysML model. The second section

IThe ICE laboratory: https://www.icelab.di.univr.it/

Table 11
SUMMARY OF THE APPLICATION RESULTS.

Type Parameter Initial Value Generated
BDD 12 -
Activity 48 -
SysML . .
Relationships 28 -
ForkJoin 36 -
XML Tags 972 1539
Axioms 312 462
Classes 57 60
OWL
Individuals 0 16
Data Properties 11 -
Object Properties 8 -
Generation time 284 ms
Reasoner time (consistent ontology) 1229 ms
Reasoner time (inconsistent ontology) 1660 ms

outlines the parameters related to the ontologies. Finally, the
last section specifies the execution time for both the automatic
generation and the consistency verification phases.

The SysML model applied in our case study is intricately
structured, comprising various elements essential for detailing
the manufacturing machinery and processes. It includes 6
BDD, 18 relationships, 36 Fork or Join elements, and 45
activity elements.

The Foundational Ontology encapsulates a substantial
amount of information. The OWL file contains 972 Extensible
Markup Language (XML) tags. These tags define 325 classes,
60 individuals, and 33 types of properties. Upon applying our
automated generation process to the SysML model, we observe
a significant expansion in the size of the resulting Production
Plant Ontology. The increased size reflects the added depth and
details the proposed process introduces to the original SysML
model. In our experiments, carried out on a laptop equipped
with an Intel i7 10700K CPU and 32 GB RAM, the time
required to generate the Production Plant Ontology is 284 ms.

Creating such an expanded ontology would be a time-
consuming and error-prone task. The automatic generation
process reduces the time required to manually define the ontol-
ogy while also reducing the probability of mistakes. Thus, the
automation of the proposed methodology reduces a substantial
burden for the engineers. Furthermore, engineers can exploit
the full potential of ontology reasoning without being required
to have deep knowledge about ontology technologies.

B. Consistency Verification

The effectiveness of our methodology has been verified
with two different experiments. First, we build a valid SysML
model in which all the represented pieces of information are
consistent with each other and with the Foundational Ontology.
This first test demonstrates the consistency of the Founda-
tional Ontology and that the automatic generation procedure
generates consistent ontology. The time required for the Pellet

InputPieceState
(has_height some xsd:double
[< "1000.0"""xsd:double])
(has_engraved_text value "")
(has_engraving value false)
(has_material_type value "plastic")
(has_position value "millingMachine")
(has_shape value "parallelepiped")
(is_clamped value false)

Figure 5. Extract of property restrictions for the clamping operation, detailing
required properties of a suitable input piece.

reasoner to verify the consistency is 1229 ms. Then, we created
a second model by introducing constraint violations within the
modeled production recipe used as a case study, making the
production recipe unfeasible. In this case, the Pellet reasoner
correctly identified the inconsistency. The consistency check
required 1660 ms, slightly more time than in the previous case
due to the time necessary to provide the information about the
identified inconsistencies.

Consider the ClampingEngage machine function used
in our production recipe. The constraints regarding the ac-
cepted state of the input piece are imposed using property
restrictions, as shown in Figure 5. These conditions specify
that the input piece must not have been already engraved,
must be unclamped, must possess a parallelepiped shape, and
others. In this second experiment, we create a production
recipe containing an input piece violating these restrictions.
Specifically, we provided in input to the ClampingEngage
machine function a piece with the following wrong proper-
ties: has_material_type equals to “steel”, has_shape
equals to “cylinder”, and has_height equals to “1100.0”.
The reasoner recognizes and highlights the issues, describing
the reasoning process used to detect the inconsistency. The
results obtained from the Pellet reasoner are shown in Figure 6.

For the sake of readability, we reported only one of the
three explanations for the constraint violations returned from
the Pellet reasoner. The other two explanations follow a
similar pattern. The displayed explanation reports the specific
causes of the inconsistency. First, it identifies the individual
ClampingEngageInputPieceState with the data prop-
erty has_shape, which contradicts the machine function’s
constraints. This leads to the conclusion that the input piece
used for the ClampingEngage operation in the production
recipe is invalid. Specifically, the value assigned to the at-
tribute has_shape contains the cylinder value instead of the
parallelepiped shape. This explanation guides the user towards
the presence of errors within the SysML model, enabling in-
advance error detection.

VI. CONCLUSIONS

In this paper, we introduced a novel methodology enrich-
ing SysML models of manufacturing systems with ontology
reasoning. The proposed methodology aims to verify the
correctness of information represented within SysML models
by checking the consistency of an automatically generated

Ontology is inconsistent,

run "pellet explain" to

get the reason.

This is the output of
Axiom:

‘pellet explain:
Thing subClassOf Nothing

Explanation(s) :

1)

ClampingEngageInputPieceState subClassOf
InputPieceState

and has_engraved_text wvalue " ()"""string

and has_engraving value "false"”"boolean

and has_material_type value "plastic"”""string

and has_position value "millingMachine"”""string

and has_shape value "parallelepiped"”"string

and is_clamped value "false"""boolean

and has_height some decimal[>= 0.0, < 1000.0]

and has_shape exactly 1 string

and has_engraved_text exactly 1 string

conceptMill clampingEngage_inputStatel
has_shape "cylinder"”"string

conceptMill_ clampingEngage_inputStatel
type ClampingEngageInputPieceState

Figure 6. Terminal output from Pellet reasoner, highlighting inconsistencies
found in the ontology after verification.

Production Plant Ontology. We validate the proposed method-
ology by showing its applicability in real-world scenarios.
Results showed that by exploiting our proposed methodology,
it is possible to rigorously verify the feasibility of production
recipes in a given system. Furthermore, the automated gen-
eration of the ontologies from the production system models
decreases the effort required by engineers.

In the future, we aim to extend the Foundational Ontology

by

including more industrial standards. Thus, allowing the

application of the methodology to more real-world scenarios.

[1]

[2]

[3]

[4]

[5]

[6]

REFERENCES

S. Zhanybek, S. Sabit, D. Dinara, S. Essam, and T. Ali, “Industry 4.0:
Clustering of concepts and characteristics,” Cogent Engineering, vol. 9,
no. 1, p. 2034264, 2022.

B. Thomas, C. John, and D. Frank, “A review of interoperability
standards for industry 4.0.” Procedia Manufacturing, vol. 38, pp. 646—
653, 2019, 29th International Conference on Flexible Automation and
Intelligent Manufacturing (FAIM 2019), June 24-28, 2019, Limerick,
Ireland, Beyond Industry 4.0: Industrial Advances, Engineering Educa-
tion and Intelligent Manufacturing.

M. Wang, S. Pang, S. Yu et al., “An optimal production scheme for
reconfigurable cloud manufacturing service system,” IEEE Transactions
on Industrial Informatics, vol. 18, no. 12, pp. 9037-9046, 2022.

E. Jarvenpid, N. Siltala, and M. Lanz, “Formal resource and capability
descriptions supporting rapid reconfiguration of assembly systems,” in
2016 IEEE International Symposium on Assembly and Manufacturing
(ISAM), 2016, pp. 120-125.

S. Gaiardelli, S. Spellini, M. Lora, and F. Fummi, “Modeling in industry
5.0: What is there and what is missing: Special session 1: Languages
for industry 5.0,” in Proc. of Forum on specification Design Languages
(FDL), 2021, pp. 01-08.

A. Kdocher, C. Hildebrandt, L. M. Vieira da Silva, and A. Fay, “A formal
capability and skill model for use in plug and produce scenarios,” in
2020 25th IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA), vol. 1, 2020, pp. 1663-1670.

S. Lu, A. Tazin, Y. Chen, M. M. Kokar, and J. Smith, “Detection
of inconsistencies in SysML/OCL models using OWL reasoning,” SN
Computer Science, vol. 4, no. 2, Jan. 2023.

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

S. Spellini, S. Gaiardelli, M. Lora, and F. Fummi, “Enabling component
reuse in model-based system engineering of cyber-physical production
systems,” in Proc. of IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA), 2021, pp. 1-8.

A. L. Ramos, J. V. Ferreira, and J. Barceld, “Model-based systems engi-
neering: An emerging approach for modern systems,” IEEE Transactions
on Systems, Man, and Cybernetics, Part C (Applications and Reviews),
vol. 42, no. 1, pp. 101-111, 2012.

C. Hildebrandt, A. Kocher, C. Kiistner et al., “Ontology building for
cyber—physical systems: Application in the manufacturing domain,”
IEEE Transactions on Automation Science and Engineering, vol. 17,
no. 3, pp. 1266-1282, July 2020.

S. Friedenthal, A. Moore, and R. Steiner, A Practical Guide to SysML,
Third Edition: The Systems Modeling Language, 3rd ed. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2014.

R. Chen, C.-H. Chen, Y. Liu, and X. Ye, “Ontology-based requirement
verification for complex systems,” Advanced Engineering Informatics,
vol. 46, p. 101148, 2020.

X. Hu, R. Arista, X. Zheng et al., “Ontology-based system to support
industrial system design for aircraft assembly,” IFAC-PapersOnLine,
vol. 55, no. 2, pp. 175-180, 2022, 14th IFAC Workshop on Intelligent
Manufacturing Systems IMS 2022.

H. Wang, V. Thomson, and C. Tang, “Change propagation analysis for
system modeling using semantic web technology,” Advanced Engineer-
ing Informatics, vol. 35, pp. 17-29, 2018.

A. Ashari, A. Sari, and H. Wardhana, “An extended rule of the sysml
requirement diagram transformation into owl ontologies,” International
Journal of Intelligent Engineering and Systems, vol. 14, pp. 506515,
02 2021.

H. Wardhana, A. Ashari, and A. K. Sari, “Transformation of sysml
requirement diagram into owl ontologies,” International Journal of
Advanced Computer Science and Applications, vol. 11, no. 4, 2020.
M. Vegetti and G. Henning, “Ontology network to support the integration
of planning and scheduling activities in batch process industries,”
Journal of Industrial Information Integration, vol. 25, p. 100254, 2022.
G. Engel, T. Greiner, and S. Seifert, “Ontology-assisted engineering of
cyber—physical production systems in the field of process technology,”
IEEE Transactions on Industrial Informatics, vol. 14, no. 6, pp. 2792—
2802, June 2018.

C. Hildebrandt, S. Torsleff, B. Caesar, and A. Fay, “Ontology building
for cyber-physical systems: A domain expert-centric approach,” in
2018 IEEE 14th International Conference on Automation Science and
Engineering (CASE), Aug 2018, pp. 1079-1086.

A. Kdocher, C. Hildebrandt, L. M. Vieira da Silva, and A. Fay, “A formal
capability and skill model for use in plug and produce scenarios,” vol. 1,
pp. 1663-1670, Sep. 2020.

C. Hildebrandt, A. Scholz, A. Fay et al., “Semantic modeling for
collaboration and cooperation of systems in the production domain,” in
2017 22nd IEEE International Conference on Emerging Technologies
and Factory Automation (ETFA), 2017, pp. 1-8.

Y. Feng, Q. Zou, C. Zhou, Y. Liu, and Q. Peng, “Ontology-based
architecture process of system-of-systems: From capability development
to operational modeling,” Applied Sciences, vol. 13, no. 9, 2023.

E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz, “Pellet: A
practical owl-dl reasoner,” Journal of Web Semantics, vol. 5, no. 2, pp.
51-53, 2007.

J.-B. Lamy, “Owlready: Ontology-oriented programming in python
with automatic classification and high level constructs for biomedical
ontologies,” Artificial Intelligence in Medicine, vol. 80, pp. 11-28, 2017.
J. H. Gennari, M. A. Musen, R. W. Fergerson et al., “The evolution
of protégé: an environment for knowledge-based systems development,”
International Journal of Human-computer studies, vol. 58, no. 1, pp.
89-123, 2003.

