
Exploiting SysML v2 Modeling for Automatic
Smart Factories Configuration

Mario Libro∗, Sebastiano Gaiardelli∗, Marco Panato†, Stefano Spellini†, Michele Lora∗, Franco Fummi∗
∗Department of Engineering for Innovation Medicine, University of Verona, Italy, name.surname@univr.it

†FACTORYAL S.r.l., San Giovanni Lupatoto, Italy, name.surname@factoryal.it

Abstract—Smart factories are complex environments equipped
with both production machinery and computing devices that
collect, share, and analyze data. For this reason, the modeling of
today’s factories can no longer rely on traditional methods, and
computer engineering tools, such as SysML, must be employed.
At the same time, the current SysML v1.* standard does not
provide the rigorousness required to model the complexity and
the criticalities of a smart factory.

Recently, SysML v2 has been proposed and is about to
be released as the new version of the standard. Its release
candidate version shows the new version aims at providing a
more rigorous and complete modeling language, able to fulfill
the requirements of the smart factory domain. In this paper, we
explore the capabilities of the new SysML v2 standard by building
a rigorous modeling strategy, able to capture the aspects of a
smart factory related to the production process, the computation
and the communication. We apply the proposed strategy to
model a fully-fledged smart factory, and we rely on models to
automatically configure the different pieces of equipment and
software components in the factory.

Index Terms—Model-Based System Engineering, SysML v2,
Smart Manufacturing.

I. INTRODUCTION

Modeling is a fundamental activity when designing and
maintaining a complex advanced manufacturing system, as
it is for industrial cyber-physical systems in general [1].
However, due to historical reasons, languages typically used
to model industrial plants and manufacturing systems are
not well suited to represent the complexity of modern smart
factories. Typically, modeling languages in manufacturing
lack the capabilities required to represent the computational
and communication aspects of the system. Thus, looking at
languages like SysML seems a natural choice to take the
ongoing digital transformation of factories. Many approaches
have been proposed to model smart factories using SysML [2]–
[5]. However, the current standard of SysML v1.* is on the one
hand, very expressive and intuitive, but on the other hand, it
lacks the rigorousness and formality required to model critical
systems like smart factories. To tackle this issue, the OMG
consortium is working on the next version of SysML, i.e.,
SysML v2, which is expected to provide more rigorousness

This study was carried out within the MICS (Made in Italy – Circular
and Sustainable) Extended Partnership and received funding from Next-
Generation EU (Italian PNRR – M4 C2, Invest 1.3 – D.D. 1551.11-10-2022,
PE00000004). CUP MICS D43C22003120001 - Cascade funding project
CollaborICE. It has been also partially supported by the PRIN 2022T7YSHJ
SMART-IC - Next Generation EU project. This manuscript reflects only the
Authors’ views and opinions, neither the European Union nor the European
Commission can be considered responsible for them.

Smart Factory

Machine-specific

Protocols

Enterprise

Site Area

Production Line

Work Cell

MachineIS
A

-9
5

 H
ie

ra
rc

h
y SysML v2

Parser

Automatic

Configuration

Computational

Infrastructure

SysML v2 Production Plant Model

Operational

Equipment

Figure 1. Overview of the contribution: a smart factory and its equipment
are modeled in SysML v2 according to the ISA-95 hierarchy, specifying the
involved communication protocols. An automatic toolchain exploits the model
to automatically configure the modeled smart factory.

while preserving the expressiveness and intuitiveness of the
current version of SysML [6]. SysML v2 is undergoing the
standardization process, and it is expected to be released by
the end of 2024. In this paper, we explore the capabilities of
the upcoming SysML v2 standard to model smart factories,
and we propose a modeling strategy to capture the necessary
information to model the machines’ functionalities, the data
being collected and exchanged in the system. To evaluate
whether the new standard is capable of capturing the necessary
information, we use the produced models to automatically
generate the configuration files to be deployed in the software
monitoring and controlling the production system.

Figure 1 shows an overview of the proposed methodology. A
SysML v2 model is used to represent the machines in the fac-
tory. The model of the equipment is organized hierarchically
according to the principles defined in the ISA-95 standard. The
model also contains the specifications of the communication
protocols, and data model of the data exchanged by the
different pieces of equipment. The SysML models produced
according to the proposed modeling strategy are input to
an automatic generation and deploy methodology, inspired
by the SysML v1.*-based methodology proposed in [5], but
adapted to the new SysML v2 specification. The automatic
configuration methodology generates the configuration files for
the software being deployed to control and monitor the factory,
and it distributes the software using container technology.

The main contribution is threefold:
• an evaluation of the expressiveness of the upcoming

SysML v2 standard in the manufacturing context;
• a modeling approach based on this evaluation;

• the adaptation of [5] to accommodate the modeling
paradigms shift introduced by SysML v2.

The proposed modeling, automatic generation, and deploy-
ment methodology has been applied to a fully operational
smart factory, the ICE Laboratory. The current version of
SysML v2 proved capable of capturing the necessary in-
formation to model the data collection, communication, and
processing aspects of a complete factory, while also enabling
automation. Thus, showcasing that SysML v2 overcomes the
limitations of its predecessor, and its potential for becoming
a predominant modeling language for smart factories and, in
general, Cyber-Physical Production Systems (CPPSs).

II. BACKGROUND

Service-oriented Manufacturing (SOM) is a promising
paradigm for software architectures in CPPS [7]. It is a
revamp of the well-known Service Oriented Architecture
(SOA) paradigm for the manufacturing domain. In SOAs, each
software component offers a set of microservices to the other
components within the architecture to enhance the modularity
and resilience of the architecture [8]. Similarly, SOM consists
of a set of machinery exposing their functionalities as a set of
machine services, and production processes are composed of
sequences of machine services [5].

While the implementation of SOAs relies on REST APIs or
message brokers to offer microservices within the architecture,
SOM needs to deal with the industrial protocols supported by
the machinery as communication interfaces. The most diffused
industrial protocols are OPC Unified Architecture (OPC UA),
Modbus, EtherCAT, Profinet, and more [9]. Most of these
protocols were designed for point-to-point communication. As
such they are not easily integrable within SOM architectures.
To enable SOM in modern manufacturing systems, a unifying
layer is needed with the role of abstracting the communication
between high-level control software and the machinery as
explored by Gaiardelli et al. in [5]. Indeed, a system based on
SOM is harder to model than a classical manufacturing system.
For this reason, the methodology proposed in this work aims
at modeling SOM-based systems.

This section presents some background, the related work,
and the guiding example used to develop the contribution.

A. The System Modeling Language: SysML

CPPSs design often relies on Model-based System En-
gineering (MBSE) methodologies, which guide system en-
gineers from the definition of the requirements to system
implementation [10]. In the last decade, SysML emerged as
a powerful modeling language to support the design of many
types of systems, including manufacturing systems [11]. The
1.* version of SysML is based on Unified Modeling Language
(UML) that allows the representation of the diverse aspects of
complex systems through the usage of diagrams.

Currently, a new release of the SysML language, SysML v2
is going through the final standardization steps [12]. SysML v2
overcomes some major limitations of the previous version by
increasing interoperability, adaptability, and rigorousness [6],

[13]. It is no longer based on UML, but it now lays is foun-
dations in Kernel Modeling Language (KerML): a modeling
language containing the core constructs used to implement
other modeling languages. KerML is based on the definition
and usage paradigm, where definitions are used to define types
of elements, while usages are used to specify a definition
in a specific context. As such, SysML v2 is defined as a
library of KerML defining the constructs of the language and
its semantics, such as packages, parts, attributes, ports, and
connections. The structure of a SysML v2 model is defined
by the packages used to organize the model elements. Parts
are used to define the components of the systems, which may
have a set of attributes and ports representing parts’ states and
interactions. Moreover, parts may perform actions and exhibit
states representing the components’ behavior.

B. Modeling of Smart Factories
Several industrial standards have been created over the years

aiming to tame the complexity of manufacturing information
systems by unifying the knowledge representation among
manufacturing software. One of the most widely adopted is
the ISA-95 standards, also known as IEC 62264, which defines
the widely adopted automation pyramid [14] categorizing into
five layers the manufacturing software. The layers range from
the lowest level, where sensors and actuators are located to
the highest level, where enterprise information systems are
located. The ISA-95 standard also defines the terminology and
data structures that manufacturing software should use within
the different levels.

The encapsulation of these standards within the modeling of
manufacturing systems is fundamental to ensure consistency of
terminology and compatibility with other existing software [5].
To the best of our knowledge, this is the first comprehensive
factory modeling approach compliant with the industrial stan-
dards exploiting the new features provided by SysML v2.

C. Guiding Example: the ICE Laboratory
The Industrial Computer Engineering (ICE) Laboratory is a

research facility of the University of Verona, meant to serve as
a demonstrator for a wide set of computational technologies
applied to the industrial manufacturing field1. It consists of
a fully-fledged production line comprising several machines,
such as a robotic workcell for assembly, a quality control cell,
3D printers, a milling machine, a and an electronic functional
testing machine. Materials are stored in a vertical warehouse
and transported to the working cells by exploiting two Auto-
mated Guided Vehicles (AGVs) and a minipallet conveyor belt.
Each machine differs in terms of communication protocols,
data formats, and control interfaces, making the integration of
the production line a challenging task. To overcome this issue,
each machine is equipped with an OPC UA server, which
uniforms the communication interface with the machinery,
hiding the drivers’ complexity. The OPC UA servers are
connected to a SOM architecture via a central message broker
interconnecting all the machinery, equipment and software in
the system, such as the control software and the databases.

1The ICE Laboratory: https://www.icelab.di.univr.it/

https://www.icelab.di.univr.it/

III. MODELING METHODOLOGY

A plant consists of production lines, each production line
consists of multiple workcells, and each workcell may be
composed of one or more machines. The methodology follows
the principles of ISA-95 standard, organizing models of the
different components and aspects of the production system
in a hierarchical structure capturing components from the
enterprise level down to the individual machines in workcells.

The methodology starts by defining the main components
describing the factory structure. The two main concepts to
be captured are the Machine and the Driver. A Machine
represents a piece of equipment, detailing the services it
exposes by modeling the machine’s variables, parameters, and
operations. A Driver represents the communication protocol
that the machine uses to interface with the system. A Driver
could be machine-proprietary or standardized. Subsequently,
the components that establish information exchange channels
between machines and drivers must be defined. Information
exchange channels are modeled using structural SysML v2
constructs, such as interfaces, ports, and connections.

Once defined, parts are instantiated to create the actual
model of the factory. This involves specifying real-world
attributes for the machines and drivers, and linking them
through the defined connections to represent the actual oper-
ational setup of the workcells. This comprehensive modeling
approach ensures that all aspects of the workcells, including
their machines and communication protocols, are accurately
captured and can be effectively monitored and controlled.

We detail the proposed modeling methodology, pairing the
explanation with its application to a running example. The
running example is based on the subtractive manufacturing
workcell in the ICE Laboratory, composed of a EMCO Con-
cept Mill 105 milling machine, and a UR5e collaborative
robot. The UR5e robot interacts with the milling machine by
handling the loading and unloading of workpieces.

A. Definition of the General Structure

The hierarchical nature of production systems is captured
in SysML v2 by utilizing nested part definitions, represent-
ing the components and sub-components within the system.
Each part definition follows the hierarchical levels of the
ISA-95 model, from the top-level entity down to specific
machines, as depicted in Code 1: the top-level component is
the Topology, which contains nested Enterprise, Site,
Area, ProductionLine, Workcell, and Machine
parts. The Machine is defined as a referential part, meaning
it references existing machine definitions within the sys-
tem rather than creating new instances. The * symbol in
Machine[*] indicates that the Workcell can reference
multiple machines, representing a set of machines within
the workcell rather than a single instance. This provides
flexibility to model dynamic configurations of machines within
each workcell, aligning with the modular nature of ISA-95.
Additionally, attributes are defined at the ProductionLine
and Workcell levels. These attributes serve to monitor
aggregated information relevant across the entire production

part def Topology {
part def Enterprise {

part def Site {
part def Area {

part def ProductionLine {
attribute def ProductionLineVariables;
part def Workcell {

ref part Machine [*];
part def WorkCellVariables;

} ...

Code 1. Hierarchical structure for modeling an industrial system according
to the ISA-95 standard. At each hierarchical level, variables can be defined
to capture operational information relevant to the specific layer.

line or work cell, such as performance metrics or overall
energy consumption.

Navigating the hierarchy, a workcell is typically composed
of machines. A machine is initially represented as abstract part
and later specialized to model a specific machine. A Machine
defines the parts MachineData and MachineServices
capturing the machine’s operational characteristics and the
services each instance of the machine provides. The Machine
part also contains a referential part Driver defining the
communication protocol used by the machine. Separating the
definitions of machines and drivers increases the flexibility
of modeling the associations between machines and their
respective communication protocols.

The Driver part is defined as an abstract part: it
serves as a template that cannot be instantiated on its own,
thus forcing the definition of specialized drivers that in-
herit common properties while adding driver-specific de-
tails. The abstract Driver definition consists of three main
sub-parts: DriverParameters, DriverVariables, and
DriverMethods. These sub-parts are essential for configur-
ing and managing the communication between the machines.
The communication protocols can either be proprietary or
standardized.

For this purpose, the part Driver is specialized in two
different abstract parts: GenericDriver, representing a
generalized driver for standardized communication proto-
cols, and MachineDriver, representing a machine-specific
proprietary driver. Typically, heterogeneous machines must
collaborate within the same factory, despite using different
communication protocols.

B. Driver Specialization Definition
The defined abstract parts MachineDriver and

GenericDriver need to be specialized to represent
specific communication protocols, whether standardized
or proprietary. Specialization in SysML v2 is expressed
via the specialize keyword or shorthand :>, allowing
to extend and refine the abstract structure, tailoring it to
the specific communication protocol being modeled. This
approach requires the refinement of the internal components,
particularly variables, parameters, and methods, to match the
specification of the chosen communication protocol.

The DriverVariables part is specialized to capture
data produced by the machine, such as status updates, sensor
readings, and real-time data. These variables, which include in-
dicators like the machine’s operational mode, program status,

and error states, are essential for monitoring and controlling
the machine’s performance. Variables can be organized hierar-
chically based on their functional roles, grouping them through
part definitions. The specific variables are also tailored to the
communication protocol in use.

Each variable is modeled using a port. Ports enable the
exposure of their attributes and provide a mechanism for
defining data flow directions (in, out, or inout). Before the
ports are instantiated, the SysML v2 port definition construct
is used to define the internal structure of each port. The usage
of these ports is detailed in Section III-E. Each port definition
specifies a set of attributes, including the variable’s value,
type, and the associated metadata providing essential details
describing the context and purpose of the variable within the
system. The attribute direction is set to input, as the data
originates from the machine.

The DriverParameters part is also specialized by
defining its internal structure: the parameters represent static
configuration data that does not change during runtime; these
are modeled as attributes rather than ports. The specified
attributes represent static configuration parameters necessary
for establishing a communication channel with the machine,
like IP address, port, or protocol-specific configuration details.

Building upon this structure, the DriverMethods part
is specialized and used to allow the execution of all the
methods available for controlling or querying the machine
via the communication protocol being modeled. Methods can
include operations, such as, checking the machine’s status
or executing a specific machine operation. Similar to the
DriverVariables, the DriverMethods specify a port
definition. Unlike the ports defined to represent variables,
method ports encapsulate method-related functionality. The
port definition includes metadata attributes describing the
method, e.g., purpose, category, identifier.

Additionally, the action construct is employed within the
port definition to represent the concept of invoking a method.
The action specifies the method’s input arguments and
output return parameters, thereby defining the data exchange
involved in performing the operation. Using ports allows for
the exposure of attributes and actions, promoting modularity
and reusability. Ports act as standardized interfaces, facilitating
seamless communication between machines and drivers.

Code 2 exemplifies the specialization of the
MachineDriver into EMCODriver. EMCODriver
is the definition of the communication protocol used by
the EMCO milling machine. The specialization defines the
parameters as attributes to configure the communication
channel for the milling machine. The internal structure
of the ports EMCOMethod and EMCOVar is defined.
Variables are organized into functional categories such as
AxesPositions and SystemStatus.

C. Machine Specialization Definition

The abstract Machine part is specialized to represent
specific physical machines within the industrial system. The
specialization of Machine follows a similar process as for
Driver. The predefined structure of the Machine part is

part def EMCODriver :> MachineDriver {
part def EMCOParameters :> DriverParameters {

attribute ip : String;
attribute ip_port : Integer;
attribute program_file_path : String;

}
part def EMCOVariables :> DriverVariables {

port def EMCOVar { //input attribute }
part def AxesPositions;
part def SystemStatus;

}
part def EMCOMethods :> DriverMethods {

port def EMCOMethod {
attribute description:String;
out action operation {
//arguments and returns attribute

}...

Code 2. Part definition of the EMCODriver as
a specialization of MachineDriver. The driver comprehends three parts:
EMCOParameters, EMCOVariables, and EMCOMethods.

refined using part definitions, focusing on two key compo-
nents: MachineData and MachineServices.
MachineData represents all the data produced and ex-

posed by the machine that can be accessed via the driver.
Its specialization is similar to the DriverVariables spe-
cialization. Part definitions are used to categorize and group
related machine data. Within each part representing a data
category, a series of ports is instantiated, with each port
corresponding to a specific machine data point. The ports
used are the conjugated versions of those defined for the
specialization of DriverVariables, retaining the same
predefined attributes. Ports conjugation, represented by the
tilde symbol (~), reverses the direction of a port’s attributes.
By using the construct redefines or its shorthand :»,
the value attribute, which serves as the container for the
machine data, is assigned a type. In contrast, the metadata
attributes describing the machine data are assigned specific,
fixed values, as they serve to consistently define the context
and characteristics of the variable throughout the model.

Similarly, the MachineServices part is specialized fol-
lowing the same approach used for MachineData. This part
specialization represents the commands and operations that
the machine provides. Each service is modeled using ports.
The ports used are conjugated versions of those defined for
the specialization of DriverMethods, ensuring that the
direction of data flow aligns with the driver’s expectations.

Within each port, depending on the specific service being
modeled, the input (arguments) and output (return values)
attributes are assigned to specific types using the redefines
keyword, ensuring that the correct data types are specified for
both the required inputs and the returned outputs.

Code 3 exemplifies the specialization of the Machine
part into EMCOMillingMachine. Two subparts are de-
fined for the MachineData of the milling machine: the
AxesPositions part models the positions of the machine’s
spindle along its axes; the SystemStatus part models the
machine’s operational status. Two ports get specified: one
for MachineData and another for MachineServices.
EMCOMachineData uses the predefined EMCOVar port
type, EMCOServices uses the predefined EMCOMethod
port type. Both ports are conjugated.

part def EMCOMillingMachine :> Machine {
part def EMCOMachineData :> MachineData {

part def AxesPositions {
port actual_X_EMCOVar_conj : ~EMCOVar {

//attributes assignments
}...

}
part def SystemStatus {...}

}
part def EMCOServices :> MachineServices {

port is_ready_EMCOMthd : ~EMCOMethod {
//attributes assignments

}...

Code 3. Definition of the EMCOMillingMachine part as a specialization
of Machine. The code outlines the structure of the milling machine within
the model, focusing on the representation of variables (EMCOMachineData)
and services (EMCOServices) exposed by the machine.

checkConnection()

<<part>> millingMachine:

EMCOMachine

<<part>> md:

EMCOMachineData

<<part>> ms:

EMCOMachineServices

<<part>> emcoDriver:

EMCODriver

<<part>> var:

EMCOVariables

<<part>> methods:

EMCOMethods

<<interface>> Interface

OPCUAVar

<<interface>> Interface

OPCUAMethod

port:

OPCUAVar

port_conj:

~OPCUAVar

port_conj:

~OPCUAMthd

port:

OPCUAMthd

ActualX

ActualY

isReady()

…

…

Figure 2. Overview of the communication channel between the milling
machine and its driver. The machine consists of MachineData
and MachineServices, each with ports. The driver includes
DriverVariables and DriverMethods, also with ports. Two
interfaces connect the machine data ports to the driver variables and the
machine services ports to the driver methods.

D. Connections Definition
Connections between parts are defined by specifying how

the ports of the machine and the driver interact using interface
and connection definitions. Interfaces are defined to connect
the standard ports to their conjugated counterparts, specifying
the flow of data between the machine and the driver and
binding the attributes of each port.

After defining the interface, connections are estab-
lished to link the machine and driver parts. The map-
ping is defined between the MachineData of the ma-
chine and the DriverVariables of the driver. Similarly,
the DriverMethods of the driver are connected to the
MachineServices of the machine.

Interfaces and connections define how data and commands
are transmitted between the machine and the driver. Figure 2
provides an overview of ports, interfaces, and connections.

E. Component Instantiation
The final step in the modeling methodology is to instantiate

these components to represent the actual machines and drivers
within the model of the industrial system, instantiating specific
instances of the specialized parts defined above.

As shown in Code 4, the instantiation starts with the top-
level part ICETopology. In workCell02, the EMCO

part ICETopology : Topology {
part UniVR : Enterprise {
part Verona : Site {
part ICELab : Area {
part ICEProductionLine : ProductionLine {
part workCell02 : Workcell {
part emco : EMCO {
ref part emcoDriver;

part emcoMachineData : EMCOMachineData {
part emcoAxesPosition : AxesPositions {
attribute actualX : Double;
bind actual_X_EMCOVar_conj.value=actualX;
...

part emcoSystemStatus:SystemStatus {...}
...

part emcoServices : EMCOServices {
action isReady {out ready : Boolean;}
...

//ur5 machine instantiation
...

Code 4. Instantiation of the ICETopology part, representing the system
hierarchy of a specific smart factory.

part emcoDriver : EMCODriver{
part emcoParameters : EMCOParameters{

:>> ip = '10.197.12.11';
:>> ip_port = 5557;
:>> program_file_path = 'path/program/file';

}
part emcoVariables : EMCOVariables{

part emcoSystemStatus : SystemStatus;
part emcoAxesPositions : AxesPositions{

attribute actualX : Double;
port pp_actual_X_EMCOVar : EMCOVar;
bind pp_actual_X_EMCOVar.value = actualX;
...

part emcoMethods : EMCOMethods{
action call_is_ready {

out ready : Boolean;
perform pp_is_ready_EMCOMthd.operation{

out ready = call_is_ready.ready;
}...

Code 5. Instantiation of the emcoDriver part used by the EMCO machine.
The driver includes driver-specific parameters, variables and methods.

milling machine is instantiated as emco, and the UR5e
collaborative robot is instantiated as ur5. Each machine
is associated with its respective driver, emcoDriver and
universalRobotDriver, which are specialized to inter-
face with the EMCO and UR5e machines respectively, as
shown in Code 5. Each machine defines its own machine data
and services. For each subpart of MachineData, such as
emcoAxesPosition, all attributes are defined and bound
to corresponding ports. A similar approach is applied to
MachineServices, using actions rather than attributes.

In particular, within the emcoMachineData part, an
attribute is defined for each variable exposed by the ma-
chine. Attributes are bound to their corresponding ports
to ensure their values are accessible to the driver. For
example, the attribute actualX is bound to the port
actual_X_EMCOVar_conj.value, facilitating the trans-
mission of data between the machine and the driver.

The actions of the emcoServices part represent ma-
chine’s services, i.e., isReady is an action checking whether
the machine is either ready or busy. The action is exposed
through ports, enabling it to be invoked directly by the driver.

Similarly, the driver’s components are instantiated as
emcoDriver and urDriver, along with their parameters,
variables, and methods. Variables and methods are specified

and bound to the corresponding ports, as shown in Code 5.
Finally, connections defined in Section III-D are instantiated

by linking and enabling exchange of information between the
driver and the machine.

IV. MODELS APPLICATION AND EXPERIMENTAL RESULTS

We used SysML models to automatically generate the con-
figuration of the software stack controlling the ICE Laboratory.
To do so, FACTORYAL S.r.l., developed a proof-of-concept
tool to automatically generate the configuration files required
when deploying the software stack. The software stack is in
charge of collecting data from the machinery, exposing their
machine services within the architecture, and storing the data
within the databases. It comprises the OPC UA servers for
each machinery, the OPC UA clients connecting the OPC UA
servers to the message broker, and the software components
storing the machinery data within the databases.

The automatic generation process is based on the one
proposed in [5], but it is adapted to support SysML v2 instead
of SysML v1.*. The process consists of two steps:

1) A set of intermediate JSON files is produced from the
SysML model of the factory. The tool explores the rep-
resented ISA-95 topology of the manufacturing system,
and generates a JSON file for each Machine. The
JSON file contains the information needed to configure
their respective OPC UA server and the connection
parameters with the machine drivers. To avoid wasting
resources of the Kubernetes cluster the configuration
of the OPC UA clients connecting the machines to
the message broker follows a different approach. The
number of OPC UA clients connecting the machinery
to the architecture is minimized by connecting multiple
machines to the same client. This is done by grouping
multiple machines by considering the maximum number
of variables and methods supported by each OPC UA
client module. For each group of machines, the tool
generates two JSON files containing the information to
configure the OPC UA client and the software compo-
nent storing the data in the databases.

2) The JSON files generated by the first step are used
to produce the configuration files for the Kubernetes
cluster. For each JSON file, the tool generates a YAML
file containing the definition of all the resources required
by the software component in the Kubernetes cluster.
This is done by using template files rendered according
to the information contained in the JSON files.

A. Experimental Results

The proposed modeling methodology has been applied to
create a complete model of the ICE Laboratory’s production
system. Then, the model has been used to automatically con-
figure the equipment and machinery of the production system.
Table I provides a comprehensive summary of the SysML v2
elements used in the model. Each line corresponds to a specific
machine and its associated driver, grouped by the workcell
they belong to. The WC column identifies the workcell, the
Machine and Driver columns specify the machines being

Table I
FEATURES OF THE ICE LAB SYSML V2 MODEL AND OF THE RESULTING

CONFIGURATION FILES.

WC Machine Driver Part Attributes
Inst.

Ports
Inst.

Machine
Variables

Machine
ServicesDef. Inst.

01 SPEA
ATE OPC UA 9 8 48 16 3 5

02
EMCO
Milling

Machine
Driver 12 17 238 106 34 19

UR5e
Cobot

Machine
Driver 23 17 611 206 99 4

03
Siemens

PLC OPC UA 31 82 194 68 26 8

Fiam
eTensil OPC UA 11 28 82 24 12 3

04 Quality
Control PC OPC UA 10 9 85 30 13 2

05 Vertical
Warehouse OPC UA 10 9 44 16 5 3

06

Conveyor
Line OPC UA 144 143 1220 612 296 10

RB-Kairos OPC UA 11 18 48 14 5 6
RB-Kairos OPC UA 11 18 48 14 5 6

Generation Time (s) # OPC UA
Server

OPC UA
Clients Config. Size (KB)

3.19 6 4 697

modeled and their corresponding communication protocols;
the Part column reports the number of part definitions and part
instances used to model each machine and driver; the Attribute
Instances and Port Instances columns report the number of
instantiated attributes and port usages that define the machine
and driver’s interactions; the Machine Variables and Machine
Services columns the number of variables and services exposed
by each machine. The automatic generation process yielded the
results shown in the last row of Table I. The total time required
to generate the configuration files for the entire system was
3.19 seconds. This process involved creating an OPC UA
server for each workcell in the system, resulting in 6 OPC UA
servers in total. Additionally, 4 OPC UA clients were gener-
ated to handle connections between the machinery and the
architecture, optimizing resource usage by grouping multiple
machines per client. The final size of the configuration files
produced was 697 KB, which would have been manually
written by engineers if not automatically generated from the
SysML models. The deployment on the production system
was successful and the automatically generated configuration
enables all the functionalities of the production line. Thus,
SysML v2 proved itself being capable of capturing all the
aspects of the used smart manufacturing system.

V. CONCLUSIONS

In this paper, we explored the capabilities of the soon-to-be
standard SysML v2 in capturing the information required to
model a smart manufacturing system. We did so by proposing
an approach for modeling SOM architectures. The proposed
methodology supports modeling heterogeneous machines and
machine drivers. Then, we showed how the information within
the model can be exploited to automatically generate the
configuration files needed to deploy the software components
necessary to integrate the machines within a SOM architecture.

The methodology has been validated on a real manufac-
turing system, comprising several heterogeneous machinery.
The results demonstrate the effectiveness of the proposed
methodology in reducing the time required to configure the
entire software stack and ensuring consistency between the
SysML model and the actual implementation.

REFERENCES

[1] A. Wortmann, O. Barais, B. Combemale, and M. Wimmer, “Modeling
languages in Industry 4.0: an extended systematic mapping study,”
Software and Systems Modeling, vol. 19, no. 1, pp. 67–94, 2020.

[2] S. Gaiardelli, S. Spellini, M. Lora, and F. Fummi, “Modeling in Industry
5.0: What Is There and What Is Missing: Special Session 1: Languages
for Industry 5.0,” in Proceedings of 2021 Forum on specification &
Design Languages (FDL), 2021, pp. 01–08.

[3] P. Bareiß, D. Schütz, R. Priego, M. Marcos, and B. Vogel-Heuser,
“A model-based failure recovery approach for automated production
systems combining SysML and industrial standards,” in Proceedings
of 2016 IEEE 21st International Conference on Emerging Technologies
and Factory Automation (ETFA), 2016, pp. 1–7.

[4] S. Spellini, S. Gaiardelli, M. Lora, and F. Fummi, “Enabling Component
Reuse in Model-based System Engineering of Cyber-Physical Produc-
tion Systems,” in Proceedings of the IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA), 2021, pp. 1–8.

[5] S. Gaiardelli, S. Spellini, M. Panato, C. Tadiello, M. Lora, D. S. Cheng,
and F. Fummi, “Enabling Service-oriented Manufacturing through Ar-
chitectures, Models and Protocols,” IEEE Access, 2024.

[6] S. Friedenthal, “Future Directions for MBSE with SysML v2,” in Pro-
ceedings of the 11th International Conference on Model-Based Software
and Systems Engineering - MODELSWARD, INSTICC. SciTePress,
2023, pp. 5–9.

[7] F. Tao and Q. Qi, “New IT Driven Service-Oriented Smart Manufac-
turing: Framework and Characteristics,” IEEE Transactions on Systems,
Man, and Cybernetics: Systems, vol. 49, no. 1, pp. 81–91, 2019.

[8] N. Niknejad, W. Ismail, I. Ghani, B. Nazari, M. Bahari, and A. R.
B. C. Hussin, “Understanding Service-Oriented Architecture (SOA): A
systematic literature review and directions for further investigation,”
Information Systems, vol. 91, p. 101491, 2020.

[9] “OPC Unified Architecture specification – Part 1: Overview and con-
cepts release 1.04 OPC Foundation,” 2017.

[10] A. L. Ramos, J. V. Ferreira, and J. Barceló, “Model-Based Systems
Engineering: An Emerging Approach for Modern Systems,” IEEE
Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews), vol. 42, no. 1, pp. 101–111, 2012.

[11] B. Vogel-Heuser, D. Schütz, T. Frank, and C. Legat, “Model-driven en-
gineering of Manufacturing Automation Software Projects – A SysML-
based approach,” Mechatronics, vol. 24, no. 7, pp. 883 – 897, 2014, 1.
Model-Based Mechatronic System Design 2. Model Based Engineering.

[12] OMG, “System Modeling Language v2.0 beta 2,” Apr. 2024, accessed:
2024-09-20. [Online]. Available: https://www.omg.org/spec/SysML

[13] M. Bajaj, S. Friedenthal, and E. Seidewitz, “Systems modeling language
(SysML v2) support for digital engineering,” INSIGHT, vol. 25, no. 1,
pp. 19–24, 2022.

[14] International Society of Automation, “ISA95, Enterprise-Control
System Integration,” 2013, accessed: 2024-09-20. [Online].
Available: https://www.isa.org/standards-and-publications/isa-standards/
isa-standards-committees/isa95

https://www.omg.org/spec/SysML
https://www.isa.org/standards-and-publications/isa-standards/isa-standards-committees/isa95
https://www.isa.org/standards-and-publications/isa-standards/isa-standards-committees/isa95

	Introduction
	Background
	The System Modeling Language: SysML
	Modeling of Smart Factories
	Guiding Example: the ICE Laboratory

	Modeling Methodology
	Definition of the General Structure
	Driver Specialization Definition
	Machine Specialization Definition
	Connections Definition
	Component Instantiation

	Models Application and Experimental Results
	Experimental Results

	Conclusions
	References

